Skip to main content
Protein Turnover
Protein Turnover

Calculations

We are hunting for peptides that may have taken up heavy atom isotopes such as 15N. Since there can be anywhere from 0 to maxIso uptake of heavy atoms we need to search for a range of mz's for each peptide.

eics

We try and fit a gaussian to the intensities of the peptide without isotopic enrichment

$$\begin{equation} \text{monoFitParams} \equiv \text{minimize}[\mu,\sigma, k, b] = \sum_i \left(k \times e^{-( \text{retention-time}_i - \mu)^2/2 \sigma^2} + b - \text{intensity}^{o}_i \right)^2 \end{equation}$$

where $`\text{intensity}^{o}_{i}`$ are the intensities found for the peptide with no isotopic enrichment. (Actually we fit to a smoothed version of the intensities)

We use quadrature to estimate the area under this curve.

$$\begin{equation} A_{\text{o}} = \int_{l_b=\max(\mu_{opt} - 2 * \sigma_{opt} , rt_0)}^{u_b=\min(\mu_{opt} + 2 * \sigma_{opt} , rt_n)} d\text{rt} \left( k_{opt} \times e^{-(\text{rt} - \mu_{opt})^2/2 \sigma_{opt}^2}+ b_{opt} \right) \end{equation}$$

which we can do analytically as: $$\begin{equation} A_o = \text{b}_\text{opt} \times (u_b - l_b) + k_\text{opt} \times \sigma_\text{opt}\times \sqrt{\frac{\pi}{2}} \left[\text{erf}\left(\frac{1}{\sqrt{2}}\frac{u_b - \mu_\text{opt}}{\sigma_\text{opt}}\right) - \text{erf}\left(\frac{1}{\sqrt{2}}\frac{l_b - \mu_\text{opt}}{\sigma_\text{opt}}\right) \right] \end{equation}$$

$`A_o`$ is stored as monoPeakArea.

Estimating intensities of EICs

We now linearly fit the scatter plots of the heavy peptides with the base peptide. (with the configuration variable WITH_ORIGIN as False — the default — $`\alpha`$ is held to zero.)

$$\begin{equation} I^{\text{[eic]}}_{rt} \sim \alpha^{\text{[eic]}} + \beta^{\text{[eic]}} I^{\text{mono}}_{rt} \end{equation}$$

isotope envelopes

Note that the first value of isotopeEnvelopes is based on an mz that has negative enrichment (at least theorectically!) as a check. (See the blue line in the plot at top.)

If we integrate this relationship on both sides over the retention time range we get an intensity relationship:

$$\begin{equation} \text{isotopeEnvelopes[eic]} = A^{\text{[eic]}} = \max(0, \alpha^{\text{[eic]}} \times( u_b - l_b) + A_{\text{o}} \times \beta^{\text{[eic]}}) \end{equation}$$

$`\alpha`$ is probably small due to the fact that there will be zero intensities on both sides at the margins.


Isotopic Abundance

The isotopic abundance of a peptide is calcualated from Efficient Calculation of Exact Fine Structure Isotope Patterns via the Multidimensional Fourier Transform (2014) by Andreas Ipsen.

We use this a lot since we need to calculate it with elevated abundance levels for the isotope we are using in our experiment. We use the notation $`\text{ndist}_i^{E}`$ to identify the abundances found if the environmental abundance (of our heavy isotope is E).

We calculate isotopic abundance from natural abundance to (user specified) maximum labelled abundance

$$\begin{equation} a_i^\text{iso} = \text{natural-abundance} + \frac{i}{N}\times(\text{maximumLabelEnrichment} - \text{natural-abundance}) \quad\forall\; i \in [0,N] \end{equation}$$

where N is taken to be the labelled element count of the peptide. Then we adjust abundances of the labelled element (so they always sum to 1)

$$\begin{equation} \text{adjustedAbundance}_{k} = \left\{ \begin{array}{ll} (1-a^\text{iso}) \times \frac{\text{Abundance}_k}{\sum_{l\ne \text{iso}} \text{Abundance}_l} & \text{if}\; \text{iso} \ne k \\ a^\text{iso}\; & \text{if}\; \text{iso} = k\end{array}\right. \end{equation}$$

for each of these values we recalulate the ndist array with these new abundances.

$$\begin{equation} \begin{array}{cc} & \begin{array}{ccc} \quad a_o & a_1 & \cdots & a_N \\ \end{array} \\ \begin{array}{r c c} \text{iso}_0 \\ \text{iso}_1 \\ \text{iso}_2 \\ \cdots \\ \text{iso}_{\text{isoMax}} \end{array} & \left[ \begin{array}{c c c} \left[\begin{array}{c} \color{red}{n} \\ \color{red}{d} \\ \color{red}{i} \\ \color{red}{s} \\ \color{red}{t} \end{array} \right] \left[\begin{array}{c} \color{green}{n} \\ \color{green}{d} \\ \color{green}{i} \\ \color{green}{s} \\ \color{green}{t} \end{array} \right] \;\cdots\; \left[\begin{array}{c} \color{blue}{n} \\ \color{blue}{d} \\ \color{blue}{i} \\ \color{blue}{s} \\ \color{blue}{t} \end{array} \right] \end{array} \right] \end{array} \begin{array}{c} \; \\ \times \mathbf{w} \end{array} \begin{array}{c} \; \\ \quad = \end{array} \begin{array}{c} \; \\ \quad \mathbf{A} \times \mathbf{w} \end{array} \begin{array}{c} \; \\ \quad \sim \end{array} \begin{array}{c} \; \\ \quad \mathbf{I}^{exp} \end{array} \end{equation}$$

With $`\mathbf{w} \ge 0`$ and $`\text{labelledEnvelopes} \equiv \mathbf{w}`$. We do a Non-Negative Least Squares (NNLS) optimisation to estimate the $`\mathbf{\hat{w}}`$.

labelled envelopes

We calcuate a scaled deviance as a measure of goodness of fit.

$$\begin{equation} \frac{\sqrt{\Vert \mathbf{A} \times \mathbf{\hat{w}} - \mathbf{I}^{exp} \Vert^2}}{\sum_i \hat{w}_i } \end{equation}$$

If we turn the positive weights $`\mathbf{\hat{w}}`$ into fractions $`f_i = w_i / \sum_{i=0}^{N} w_i`$ then LPF $`\equiv \text{relativeIsotopeAbundance}`$ (an estimate of the fraction of this peptide that include some/any heavy atoms) $$\begin{equation} \text{relativeIsotopeAbundance} = 1 - f_0 = \sum_{i=1}^N f_i \end{equation}$$

enrichment is an estimate/average of the fraction of heavy atoms (of the labelled type) in the peptide:

$$\begin{equation} \text{enrichment} = \langle a_i^{iso} \rangle = \sum_{i=0}^N f_i a_i^{iso} \ge 0 \end{equation}$$

where $`N`$ is the labelled element count of the peptide. With this $`\text{enrichment}`$ we recalulate $`\text{ndist[enrichment]}`$ using this abundance of the isotope. Then we calculate the Pearson correlation coefficient: with $`x = \text{heavyDistribution}`$ and $`y = \text{ndist[enrichment]} \equiv \text{ndist}^E`$

$$\begin{equation} \text{heavyCor} = r = \frac{\sum (x - \bar{x}) (y - \bar{y})} {\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}} \end{equation}$$

$`\text{heavyDistribution}`$ is just a "normalized" version of $`\text{isotopeEnvelopes}`$: $$\begin{equation} \text{heavyDistribution} = \max(0, \text{isotopeEnvelopes} - A_o \frac{\text{ndist}}{\text{ndist[0]}}) \end{equation}$$

Fitted Envelopes Plot

With E as enrichment and relativeIsotopeAbundance as LPF we calculate : $$\begin{equation} \text{theoreticalDist} = \mathbf{A} \times \mathbf{\hat{w}} \end{equation}$$

  • naturalDist $`A_o \times \text{ndist}`$ is plotted as orange vertical dashed lines.
  • theoreticalDist is mirrored on the x-axis and plotted inverted as .
  • $`\text{heavyDistribution} = \max(0, \text{isotopeEnvelopes} - \text{naturalDist})`$ is plotted as
  • isotopeEnvelopes is plotted as
  • the negative enrichment value is used to filter hits $`\frac{\text{isotopeEnvelopes}[0]}{\text{isotopeEnvelopes}[-1]} \ge \text{monoMinus1MinRatio}`$

fitted envelopes